

(Paired Comparisons: Paired t-test)

- Previously we discussed the difference between two population means assuming that the samples were independent.
- Sometimes we may want to assess the effectiveness of a treatment or experimental procedure making use of observations resulting from dependent samples.
 - > A hypothesis test based on this type of data is called paired comparison test.
 - > Instead of performing the analysis with individual observations, we use d_i (the difference between pairs of observations as the variable of interest).
 - > When the n sample differences computed from the n pairs of measurements constitute a simple random sample from a normally distributed population of differences, the test statistic for testing hypothesis about the population mean difference μ_d is:

$$\checkmark \quad t = \frac{\overline{d} - \mu_{d_0}}{SE}$$

where :

 \overline{d} is the sample mean difference

 μ_{d_0} is the hypothesiz ed population mean difference

$$SE = \frac{s_d}{\sqrt{n}}$$

n is the number of sample difference s

 s_d is the standard deviation of the sample difference s

★ Example:

In a study to evaluate the effect of very low calorie diet (VLCD) on the weight of 9 subjects, the following data was collected:

B (befere)	117.	111.4	98.6	104.3	105.4	100.4	81.7	89.5	78.2
(belore)	3								
A (After)	83.3	85.9	75.8	82.9	82.3	77.7	62.7	69	63.9

- ✓ The researchers wish to know if these data provide sufficient evidence to allow them to conclude that the treatment is effective in causing weight reduction in those individuals.
- ✓ If we choose (d_i =A B), the differences are: -34, -25.5, -22.8, -21.4, -23.1, -22.7, -19, -20.5, -14.3.
- Assumptions: the observed differences constitute a simple random sample from a normally distributed population of differences that could be generated.
- ✓ We may obtain the differences in one of two ways: by subtracting the before weights from the after weights (A B) or by subtracting the after weights from the before weights (B A).
- ✓ If the test is two sided and the question of interest is (is there a difference in mean body weight):
 A-B or B-A can be used H₀ and H₁ are the same for either:
- ✓ t- critical = \pm t (1- $\alpha/2$, df = n-1)
- $\checkmark \quad H_0: \, \mu_d = 0$
- $\checkmark \quad H_A: \mu_d \neq 0$

✓ If the question of interest is (does the VLCD result is significant weight reduction), H₀ and H_A change on whether A-B or B-A is used as follows

A-B	B-A
H ₀ µ _d ≥0, H _a µ _d < 0	$H_0 \mu_d \le 0, H_a \mu_d > 0$
t-critical = t (α , df=n-1) or t-critical = -t (1- α , df= n-1)	t-critical = t (1- α ,n-1)

- ✓ The test statistic: $t = \frac{\overline{d} \mu_{d_0}}{s_{\overline{d}}}$
- ✓ Decision rule: Let α=0.05, and the question of interest was (is their significant weight reduction after VLCD) (Based on A-B H₀: μ_d ≥ 0; H_a: μ_d < 0, left sided) the critical value of t_{α, df=8} or -t (1-α, df=8) is -1.86, reject H₀ if the computed t is less than or equal to the critical value.

$$\overline{d} = \frac{2d_i}{n} = \frac{-203.3}{9} = -22.5889$$
$$s_d^2 = \frac{\Sigma(d_i - \overline{d})^2}{n - 1} = 28.2961$$
$$t = \frac{-22.5889 - 0}{\sqrt{\frac{28.2961}{9}}} = -12.7395$$

Reject H_0 , since -12.7395 is in the rejection region. We may conclude that the diet program is effective

> A 95% confidence interval for μ_d may be obtained as follows:

✓
$$\overline{d} \pm t_{(1-\alpha), df=8} * SE$$

-22.5889±1.86√28.2961/9
-22.5889±4.0888

-26.68,-18.50

t Table	•										
cum. prob	t .50	t.75	t .80	t .85	t.90	t.95	t.975	t .99	t .995	t .999	t .9995
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df											
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587

O Arkanacademy

🛞 www.arkan-academy.com

+962 790408805